Trigonometry One Page

We will take advantage of HTML's new (as of 2023) <math> tag to represent some useful fundamentals of trigonometry.

A look at the unit circle

sin ( θ ) = sin ( θ ) cos ( θ ) = cos ( θ ) tan ( θ ) = tan ( θ )
sin ( π θ ) = sin ( θ ) cos ( π θ ) = cos ( θ ) tan ( π θ ) = tan ( θ )
sin ( π + θ ) = sin ( θ ) cos ( π + θ ) = cos ( θ ) tan ( π + θ ) = tan ( θ )
sin ( 0 ° ) = 0 cos ( 0 ° ) = 1 tan ( 0 ° ) = 0
sin ( 90 ° ) = 1 cos ( 90 ° ) = 0 tan ( 90 ° ) = undefined *

*i.e. "domain error", or "Invalid input", etc.

>>> import math
>>> math.tan(math.radians(90))
1.633123935319537e+16
>>> 

sin(30°) = 1 2 cos(30°) = 3 2 tan(30°) = 1 3
sin(45°) = 2 2 cos(45°) = 2 2 tan(45°) = 1
sin(60°) = 3 2 cos(60°) = 1 2 tan(60°) = 3

Trigonometric Identities from the Unit Circle

tanθ = sinθ cosθ x 2 + y 2 = 1
cos 2 θ + sin 2 θ = 1 cos 2 θ = 1 - sin 2 θ sin 2 θ = 1 - cos 2 θ
1 + sin 2 θ cos 2 θ = 1 cos 2 θ 1 + tan 2 θ = sec 2 θ cos 2 θ sin 2 θ + 1 = 1 sin 2 θ cot 2 θ + 1 = csc 2 θ

Complementary Angles

cosin = sin of the complementary angle

cotan = tan of the complementary angle

cosec = sec of the complementary angle

cos θ = sin ( 90 ° θ ) cot θ = tan ( 90 ° θ ) csc θ = sec ( 90 ° θ )
sin θ = cos ( 90 ° θ ) tan θ = cot ( 90 ° θ ) sec θ = csc ( 90 ° θ )
cot θ = tan ( 90 ° θ ) = sin ( 90 ° θ ) cos ( 90 ° θ ) = cos θ sin θ = 1 ÷ sin θ cos θ = 1 ÷ tan θ

Example

Solve: cos θ + sin 2 θ = 1 cos θ + sin 2 θ = 1 x 2 + y 2 = 1 cos 2 θ + sin 2 θ = 1 sin 2 θ = 1 - cos 2 θ cos θ + 1 - cos 2 θ = 1 cos θ - cos 2 θ = 0 cos θ ( 1 - cos θ ) = 0 cos θ = 0 or 1 - cos θ = 0

Lessons Learned

The following holds true both for mathematics in particular and for life in general. You may ask a question, and the answer that you receive does not satisfy your curiosity. The first answer that you receive — in practice — does not answer your question. So in this case, you should go and find someone else with a different perspective, and then ask your question again.

References